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Preface

These notes grew out of my lecture notes partially used in a first-semester real analysis

course I taught at the University of Texas, Rio Grande Valley. The objective of these notes

is to provide a relatively quick and concise introduction of the essentials of abstract measure

theory and integration with emphasis in the setting of Euclidean spaces. Special emphasis

is placed on the study of the Lebesgue integral and on the class of Radon measures defined

on Rn. These notes also accompany the principle textbooks of Bartle [2], Folland [3] and

Rudin [4]

We try our best to keep the discussion self-contained but it is suggested the reader have

undertaken a semester of undergraduate analysis and have familiarity with metric spaces,

continuity, differentiation, and the construction of the Riemann integral.

Review of the Riemann integral and its limitations

We give a brief construction of the Riemann integral and its basic properties, and describe

some of the deficiencies of this notion of integration in modern theory and applications in the

mathematical sciences. For simplicity, we shall consider functions f : [a, b] −→ R that are

defined and bounded on some closed and bounded interval I = [a, b]. Some preparations are

in order to define what it means for f to be Darboux (or equivalently Riemann) integrable,

but we focus on the Darboux construction of the integral.

Given an interval I = [a, b], we may decompose I into n subintervals {Ii}ni=1, where

a = t0 < t1 < t2 < t3 . . . < tn−1 < tn = b,

and Ii = ti − ti−1 for i = 1, 2, . . . , n. The length of each subinterval Ii will be denoted by

`(Ii) = ti − ti−1.
Each such collection of subintervals of I is called a subdivision of I, and we denote

it by ∆(I) or simply just by ∆. Given a subdivision ∆, the boundedness of f ensures the
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following quantities are defined:

m = inf
x∈I

f(x), M = sup
x∈I

f(x), mi = inf
x∈Ii

f(x) and Mi = sup
x∈I

f(x)

for i = 1, 2, 3, . . . , n. Then we define the upper Darboux sum S+(f,∆) and the lower

Darboux sum S−(f,∆) with respect to f and ∆, respectively by

S+(f,∆) =
n∑
i=1

Mi`(Ii) and S−(f,∆) =
n∑
i=1

mi`(Ii).

Prior to defining the (Darboux) integral of a bounded function f : [a, b] −→ R, some

preliminary definitions and intermediate results are needed. Firstly, we may obtain a new

subdivision from each subdivision ∆(I) with endpoints {ti}ni=1 by adding additional points.

This leads to a new subdivision called a refinement of ∆ with subintervals I ′1, I
′
2, . . . , I

′
m such

that each new subinterval I ′j is contained in a unique subinterval of the original subdivision

∆.

Now, given any pair of subdivisions ∆1 and ∆2 of the interval I, we can construct a

new subdivision which is a proper refinement of both subdivisions. More precisely, let ∆1

be a subdivision of I with subintervals I1, I2, . . . , In and let ∆2 be another with subintervals

J1, J2, . . . , Jm. If we take all endpoints of all subintervals of both subdivisions and arrange

them in increasing order then relabel accordingly, we obtain a new subdivision ∆ that defines

a refinement of both ∆1 and ∆2. This subdivision ∆ is called the common refinement of

∆1 and ∆2.

Proposition 0.1. Let f be a bounded function on I = [a, b] and suppose ∆ is a subdivision

of I. Then

(a) m(b− a) ≤ S−(f,∆) ≤ S+(f,∆) ≤M(b− a).

(b) If ∆′ is a refinement of ∆, then S−(f,∆) ≤ S−(f,∆′) ≤ S+(f,∆′) ≤ S+(f,∆).

(c) For any pair of subdivisions ∆1 and ∆2 of I, S−(f,∆1) ≤ S+(f,∆2).

Proof. We let ∆ be a subdivision of I with n subintervals Ii = [ti−1, ti] for i = 1, 2, . . . , n.

(a) Noting that m ≤ mi ≤Mi ≤M for i = 1, 2, . . . , n, simple calculations reveal

m(b− a) = m
n∑
i=1

`(Ii) ≤
n∑
i=1

mi`(Ii) = S−(f,∆) ≤
n∑
i=1

Mi`(Ii) = S+(f,∆)

≤M

n∑
i=1

`(Ii) = M(b− a).

(b) Let ∆′ be a refinement of ∆, and let I ′1, I
′
2, . . . , I

′
m be its subintervals. As ∆′ is itself a
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subdivision, the fact that

S−(f,∆′) ≤ S+(f,∆′) (0.1)

is a consequence of part (a).

By definition of a refinement, each subinterval I ′i is uniquely contained in a subinterval

Iki in ∆ for some 1 ≤ ki ≤ n. Likewise, each subinterval Ii in ∆ can be expressed as a finite

union of subintervals {I ′ij}
Ni
j=1 in ∆′, i.e., Ii = ∪Ni

j=1I
′
ij

.

Noticing that mi ≤ m′ij := infx∈I′ij
f(x), we see that

S−(f,∆) =
n∑
i=1

mi`(Ii) ≤
n∑
i=1

mi

( Ni∑
j=1

`(I ′ij)
)

≤
n∑
i=1

Ni∑
j=1

m′ij`(I
′
ij

) ≤
m∑
i=1

m′i`(I
′
i) = S−(f,∆′). (0.2)

In addition, since Mki ≥M ′
i = supx∈I′i f(x), we obtain

S+(f,∆′) =
m∑
i=1

M ′
i`(I

′
i) ≤

n∑
i=1

Mi`(Ii) = S+(f,∆). (0.3)

Hence, combining (0.1)-(0.3) leads to the desired conclusion.

(c) For any subdivisions ∆1 and ∆2 of the interval I, let ∆ be the common refinement of

this pair. Part (b) implies S−(f,∆1) ≤ S−(f,∆), part (a) implies S−(f,∆) ≤ S+(f,∆) and

part (b) again implies S+(f,∆) ≤ S+(f,∆2). Therefore, S−(f,∆1) ≤ S+(f,∆2).

We are ready to define the (Darboux) integral of a bounded function. First, we consider

the sets

E−(f) = {S−(f,∆) |∆ is any subdivision of I}

and

E+(f) = {S+(f,∆) |∆ is any subdivision of I}.

Thanks to Proposition 0.1, both E−(f) and E+(f) are non-empty bounded subsets of R
and therefore supE− and inf E+ exist, where the supremum and infimum are taken over all

possible subdivisions of I. Then, we define the upper Darboux integral of f on I = [a, b]

to be the quantity inf E+, and we denote it by

ˆ b

a

f(x) dx.

The lower Darboux integral of f on I is defined by supE−, which we denote by

ˆ b

a

f(x) dx.
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We say a bounded function f is Darboux integrable or just integrable on I if
´ b
a
f(x) dx =´ b

a
f(x) dx and this common value is denoted by

´ b
a
f(x) dx.

A consequence of Proposition 0.1 is the following theorem.

Theorem 0.1. If f is a bounded function on I = [a, b] such that m(b−a) ≤ f(x) ≤M(b−a)

for all x ∈ I, then

m(b− a) ≤
ˆ b

a

f(x) dx ≤
ˆ b

a

f(x) dx ≤M(b− a).

A necessary and sufficient condition for the integrability of a bounded function on I =

[a, b] is provided in the following theorem.

Theorem 0.2 (Integrability Criterion). Suppose that f is bounded on an interval I = [a, b].

Then f is integrable if and only if the following property holds: For every ε > 0 there exists

a subdivision ∆ of I such that

S+(f,∆)− S−(f,∆) < ε. (0.4)

Proof. Assuming (0.4) holds, for any choice of ε > 0, the definition of upper and lower

Darboux sums lead to ˆ b

a

f(x) dx−
ˆ b

a

f(x) dx < ε.

Therefore, by the so-called ε-principle, this implies

ˆ b

a

f(x) dx ≤
ˆ b

a

f(x) dx.

On the other hand, Theorem 0.1 shows

ˆ b

a

f(x) dx ≥
ˆ b

a

f(x) dx,

which verifies the upper and lower Darboux sums coincide. Hence, f is integrable on I.

Conversely, we assume f is integrable on I and let ε > 0 be given. By definition of´ b
a
f(x) dx and

´ b
a
f(x) dx, there exist (why?) subdivisions ∆1 and ∆2 such that

S+(f,∆1) <

ˆ b

a

f(x) dx+ ε/2 and S−(f,∆2) >

ˆ b

a

f(x) dx− ε/2. (0.5)

Letting ∆ be the common refinement of ∆1 and ∆2, Proposition (0.1) leads to

S+(f,∆)− S−(f,∆) ≤ S+(f,∆1)− S−(f,∆2).

And inserting the inequalities of (0.5) into this last inequality will give us condition (0.4).

This completes the proof of the theorem.
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Important consequences of this theorem are as follows. First, as any function f that

is continuous on a compact set [a, b] is uniformly continuous, the Integrability Criterion

Theorem applies and ensures f is integrable on [a, b]. The theorem applies to bounded and

monotonic functions as well, and we leave the details of both claims for the reader to verify.

Corollary 0.1. If f is continuous on I = [a, b], then f is integrable on I.

Corollary 0.2. If f is bounded and monotone on I = [a, b], then f is integrable on I.

Let us examine the basic properties of the integral.

Proposition 0.2. Let k be a non-zero constant, and suppose f is a bounded function on

I = [a, b] and g = kf on I.

If k > 0, then

(a)

ˆ b

a

g(x) dx = k

ˆ b

a

f(x) dx, (b)

ˆ b

a

g(x) dx = k

ˆ b

a

f(x) dx.

If k < 0, then

(a)

ˆ b

a

g(x) dx = k

ˆ b

a

f(x) dx, (b)

ˆ b

a

g(x) dx = k

ˆ b

a

f(x) dx.

In order to prove this proposition, we shall need the following lemma.

Lemma 0.1. Consider the same assumptions outlined in Proposition 0.2. Then

If k > 0, then

(a) infx∈I g(x) = k infx∈I f(x), (b) supx∈I g(x) = k supx∈I f(x).

If k < 0, then

(a) infx∈I g(x) = k supx∈I f(x), (b) supx∈I g(x) = k infx∈I f(x).

Proof. We shall only prove parts (b) for the case of k > 0, since the remaining cases follow

similarly. Let k > 0. Since f(x0) ≤ supx∈I f(x) for all x0 ∈ I, we get g(x0) = kf(x0) ≤
k supx∈I f(x) and so

sup
x∈I

g(x) ≤ k sup
x∈I

f(x). (0.6)

To show the reverse inequality, we let ε > 0 be given. By definition of the supremum,

we can find an element x0 ∈ I such that f(x0) > supx∈I f(x) − ε/k. This implies that

supx∈I g(x) ≥ g(x0) = kf(x0) > supx∈I f(x)− ε, that is

k sup
x∈I

f(x) ≤ sup
x∈I

g(x) + ε for every ε > 0.

The ε-principle implies

k sup
x∈I

f(x) ≤ sup
x∈I

g(x). (0.7)

The desired identity in (b) follows from (0.6) and (0.7).

6



Proof of Proposition 0.2. We prove parts (b) for both cases in k, since the remaining cases

are proved similarly. Let k > 0 and suppose ∆ be any subdivision of I with subintervals

I1, I2, . . . , In. Thanks to Lemma 0.1, for each i = 1, 2, . . . , n, we have

m̃i := inf
x∈Ii

g(x) = mi := k inf
x∈Ii

f(x) and M̃i := sup
x∈Ii

g(x) = Mi := k sup
x∈Ii

f(x).

This leads to

S+(g,∆) =
n∑
i=1

M̃i`(Ii) =
n∑
i=1

kMi`(Ii) = k

n∑
i=1

Mi`(Ii) = kS+(f,∆).

By taking the infimum over all possible subdivisions ∆ of I gives inf S+(g,∆) = k inf S+(f,∆),

that is, ˆ b

a

g(x) dx = k

ˆ b

a

f(x) dx.

Instead, let k < 0, the above argument still applies and leads to S+(g,∆) = kS−(f,∆). By

taking the supremum over all possible subdivisions ∆ of I and noting k < 0, we obtain

supS−(g,∆) = sup kS−(f,∆) = k inf S−(f,∆),

This is equivalent to ˆ b

a

g(x) dx = k

ˆ b

a

f(x) dx.

Proposition 0.3. Suppose f and g are bounded functions on I = [a, b] such that f(x) ≤ g(x)

for all x ∈ I. Then

(a)

ˆ b

a

f(x) dx ≤
ˆ b

a

g(x) dx and (b)

ˆ b

a

f(x) dx ≤
ˆ b

a

g(x) dx.

Proof. We only prove part (a) as the proof of (b) is similar. Take ∆ to be any subdivision

of I with subintervals I1, I2, . . . , In and denote m̃i = infx∈Ii g(x), M̃i = supx∈Ii g(x), mi =

infx∈Ii f(x), and Mi = supx∈Ii f(x) Since f ≤ g on I, we have mi ≤ m̃i and Mi ≤ M̃i for

i = 1, 2, . . . , n and thus

S−(f,∆) =
n∑
i=1

mi`(Ii)

≤
n∑
i=1

m̃i`(Ii) = S−(g,∆) ≤ supS−(g,∆) =

ˆ b

a

g(x) dx.

This leads to ˆ b

a

f(x) dx = supS−(f,∆) ≤
ˆ b

a

g(x) dx.
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Proposition 0.4. Suppose f and g are bounded functions on I = [a, b] and set h = f + g

on I. Then

(a)

ˆ b

a

h(x) dx ≥
ˆ b

a

f(x) dx+

ˆ b

a

g(x) dx,

(b)

ˆ b

a

h(x) dx ≤
ˆ b

a

f(x) dx+

ˆ b

a

g(x) dx.

Proof. We shall only prove part (b) as part (a) is similar. Let ∆ be any subdivision of I with

subintervals I1, I2, . . . , In. For all x ∈ Ii, h(x) ≤ f(x) + g(x) ≤ supx∈Ii f(x) + supx∈Ii g(x),

therefore

Mi := sup
x∈Ii

h(x) ≤ sup
x∈Ii

f(x) + sup
x∈Ii

g(x) =: M1,i +M2,i.

Then we calculate the upper Darboux sum

S+(h,∆) =
n∑
i

Mi`(Ii) ≤
n∑
i

M1,i`(Ii) +
n∑
i

M2,i`(Ii) = S+(f,∆) + S+(g,∆).

Thus, ˆ b

a

h(x) dx = inf S+(h,∆) ≤ S+(h,∆) ≤ S+(f,∆) + S+(g,∆). (0.8)

Now suppose ∆1 and ∆2 are any two subdivisions with subintervals I1, I2, . . . , In and

J1, J2, . . . , Jm, respectively, and let ∆ denote their common refinement. From (0.8) and

Proposition 0.1 we get

ˆ b

a

h(x) dx ≤ S+(f,∆) + S+(g,∆) ≤ S+(f,∆1) + S+(g,∆2).

If we fix ∆1 and let ∆2 vary over all possible subdivisions of I, we deduce

ˆ b

a

h(x) dx ≤ S+(f,∆1) + inf S+(g,∆2) = S+(f,∆1) +

ˆ b

a

g(x) dx.

From this inequality, taking the infimum over all possible subdivisions ∆1 reveals

ˆ b

a

h(x) dx ≤
ˆ b

a

f(x) dx+

ˆ b

a

g(x) dx.

Immediate consequences of Propositions 0.2-0.4 is the following set of results for integrable

functions.
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Theorem 0.3. Let k be any constant, and suppose f and g are bounded and integrable

functions on I = [a, b]. Then kf and f + g are integrable such that

ˆ b

a

kf(x) dx = k

ˆ b

a

f(x) dx and

ˆ b

a

(f + g)(x) dx =

ˆ b

a

f(x) dx+

ˆ b

a

g(x) dx.

Moreover, if f(x) ≤ g(x) for all x ∈ I, then

ˆ b

a

f(x) dx ≤
ˆ b

a

g(x) dx.

With these properties for the Riemann integral established, we can derive another useful

consequence of Theorem 0.2.

Corollary 0.3. Suppose that f is a bounded function on I = [a, b]. If f is integrable on I,

then so is |f |. Moreover, ∣∣∣ ˆ b

a

f(x) dx
∣∣∣ ≤ ˆ b

a

|f(x)| dx.

Proof. Assume f is integrable on I. We prove this in two steps.

Step 1: We show the integrability of f implies the integrability of |f |.
Let ε > 0 be given, and suppose f is integrable on I = [a, b]. By Theorem 0.2, there

exists a subdivision ∆ with subintervals I1, I2, . . . , In such that

S+(f,∆)− S−(f,∆) < ε. (0.9)

As before, on each subinterval we define

M̃i = sup
Ii

|f(x)| and m̃i = inf
Ii
|f(x)|

and

Mi = sup
Ii

f(x) and mi = inf
Ii
f(x).

We also observe that for any pair of points z1, z2 ∈ Ii, there holds

|f(z1)− f(z2)| ≤Mi −mi. (0.10)

So for any given ε > 0, the definition of the supremum and infimum ensure there are points

z1, z2 ∈ Ii such that M̃i − ε/2 < |f(z1)| and m̃i > |f(z2)| − ε/2. Combining this with (0.9),

the triangle inequality and (0.10) leads us to

M̃i − m̃i ≤ |f(z1)| − |f(z2)|+ ε ≤ |f(z1)− f(z2)|+ ε ≤Mi −mi + ε.

Thanks to the ε-principle and (0.9), this implies the estimate

M̃i − m̃i ≤Mi −mi
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and therefore

S+(|f |,∆)− S−(|f |,∆) =
n∑
i=1

(M̃i − m̃i)`(Ii)

≤
n∑
i=1

(Mi −mi)`(Ii)

= S+(f,∆)− S−(f,∆)

< ε.

Since ε > 0 was chosen arbitrarily, Theorem 0.2 applies to |f |, and we deduce |f | is integrable

on I.

Step 2: We establish the remaining inequality. Supposing
´ b
a
f(x) dx ≥ 0, the fact that

f ≤ |f | on I and using Theorem 0.3 give us∣∣∣ ˆ b

a

f(x) dx
∣∣∣ =

ˆ b

a

f(x) dx ≤
ˆ b

a

|f(x)| dx.

Otherwise, if
´ b
a
f(x) dx < 0, the fact that −f ≤ |f | on I and the same reasoning above

yields ∣∣∣ ˆ b

a

f(x) dx
∣∣∣ = −

ˆ b

a

f(x) dx =

ˆ b

a

−f(x) dx ≤
ˆ b

a

|f(x)| dx.

This concludes the proof.

Let us make some concluding remarks and highlight some of the limitations of the Rie-

mann and Darboux integrals and motivate why a more general and robust theory of inte-

gration is needed.

As Theorem 0.2 suggests, we place rather stringent conditions for a function to be Rie-

mann integrable, and let us now highlight some of its deficiencies. For instance, we consider

the characteristic function ϕ : [a, b] −→ R, where ϕ(x) = χQ∩[a,b]; i.e., ϕ(x) = 1 if x ∈ Q∩[a, b]

and ϕ ≡ 0 otherwise in Q∩ [a, b]. Obviously this function is bounded on I = [a, b]. However,

it is not integrable on I, since if we take any subdivision ∆ of [a, b], S+(ϕ,∆) = 1 and

S−(ϕ,∆) = 0 and thus ˆ b

a

ϕ(x) dx = 1 6= 0 =

ˆ b

a

ϕ(x) dx.

The Riemann integral also behaves quite nicely but under ideal settings, e.g., it works well

with functions that are at least continuous, and it remains closed under uniform convergence.

More precisely, denoting by C([a, b]) the normed space of continuous real-valued functions

on [a, b] equipped with the uniform norm,

‖f‖sup = sup
a≤x≤b

|f(x)| for f ∈ C([a, b]),
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then C([a, b]) is a Banach space. Therefore, if a sequence {fn}∞n=1 in C([a, b]) converges

uniformly to a function f , i.e., limn→∞ ‖fn − f‖sup = 0, two important properties hold.

First, the limiting function f belongs to C([a, b]) and is therefore Riemann integrable on I.

Secondly,

lim
n→∞

ˆ b

a

fn(x) dx =

ˆ b

a

f(x) dx. (0.11)

In other words, uniform convergence ensures we can exchange the limit with the Riemann

integral. The big problem occurs when this notion of convergence is weakened to, say,

pointwise convergence. By this we mean {fn}∞n=1 converges pointwise to f on [a, b] if

limn→∞ fn(x) = f(x) for all a ≤ x ≤ b. Under pointwise convergence, the integrability

of the limiting function and (0.11) may no longer hold. Here is a nice example from [1]

illustrating this. If I = [a, b] = [0, 1] and we define {rn}∞n=1 to be the increasing sequence of

all rational numbers in [0, 1], then consider the functions fn : [0, 1] −→ R such that fn(x) = 1

if x ∈ {r1, r2, . . . , rn} and fn(x) = 0 otherwise. It is straightforward to check for each n ∈ N,

fn is Riemann integrable on [0, 1] with
´ 1
0
fn(x) dx = 0. Then {fn}∞n=1 converges pointwise

to the above function ϕ in [0, 1], but ϕ is not even Riemann integrable.

These issues with the Riemann integral are significant in modern mathematical prob-

lems, and the examples above illustrate that a more unrestrictive and general framework of

integration is needed—one that overcomes such limitations but still recovers the Riemann

integral in the ideal settings. This is especially critical in analysis and applications, since

problems often deal with various different (weaker) notions of a limit within spaces that are

often classes of irregular (discontinuous) functions. The more general integral is the so-called

Lebesgue integral, but we shall not confine our attention to the Lebesgue integral on just R
or the n-dimensional Euclidean spaces. We shall study a more general framework starting

with abstract measure theory and use it to build a general theory of integration.
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CHAPTER 1

Introduction to Measures

This chapter introduces the basic notion of generating a positive measure on an abstract

space.

1.1 Measures and basic concepts of measurability

Throughout, X shall denote a non-empty set.

1.1.1 Algebras and σ-algebras

Definition. An algebra of sets on X is any non-empty collection A ⊂ 2X that is closed

under finite unions and complements, i.e., E1, E2, . . . En ∈ A implies that ∪ni=1Ei ∈ A; and

Ec ∈ A whenever E ∈ A.

Here, 2X denotes the power set of X.

Definition. A σ-algebra is just an algebra that is closed under countable unions.

It is easy to verify the finite union or arbitrary intersection of any collection of σ-algebras

on X is a σ-algebra. The latter observation ensures that given E ⊂ 2X , we have the following.

Lemma 1.1. There exists a unique smallest σ-algebra denoted by M(E) containing E. We

call M(E) the σ-algebra generated by E . Moreover, E ⊂ M(F) implies that M(E) ⊂
M(F).

Definition. By the smallest σ-algebra above we mean M(E) is defined as the intersection

of all σ-algebras containing E. If M is a σ-algebra on X, we call the ordered pair (X,M) a

measurable space, and the elements of M are often called the measurable sets of X.
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If (X, τ) is a topological space, then an important example is the space (X,M(τ)),

where M(τ) the σ-algebra generated by the topology τ . This σ-algebra is called the Borel

σ-algebra on X and its members are called Borel sets.

We will later need the following notion of elementary family and how we can obtain an

algebra from such families.

Definition. A collection E ⊂ 2X is called an elementary family if

(i) ∅ ∈ E,

(ii) E, F ∈ E implies E ∩ F ∈ E,

(iii) E ∈ E implies Ec is a finite disjoint union of members of E.

Proposition 1.1. If E is an elementary family, then the collection A of finite disjoint unions

of members of E is an algebra.

1.1.2 Measurable functions

We let (X,M) and (X,N ) are two measurable space, and suppose f : X −→ Y is a mapping.

Definition. The function f : X −→ Y is called a measurable, or more precisely (M,N )-

measurable, if f−1(E) ∈M for each E ∈ N .

Proposition 1.2. If (X,M), (Y,N ) and (Z,O) are measure spaces, and if f : X −→ Y

and g : Y −→ Z are measurable functions, then the composition mapping h : g ◦f : X −→ Z

is measurable.

Proof. Indeed, if E ∈ O, then Ẽ := g−1(E) ∈ N since g is measurable. Thus, h−1(E) =

f−1 ◦ g−1(E) = f−1(g−1(E)) = f−1(Ẽ) ∈M.

Proposition 1.3. If N is generated by E, then f : X −→ Y is (M,N )-measurable if and

only if f−1(E) ∈M for each E ∈ E.

Proof. The forward implication is immediate. To prove the converse, notice that {E ⊂
Y | f−1(E) ∈ M} is a σ-algebra containing E . Therefore, M(E) ⊂ {E ⊂ Y | f−1(E) ∈ M}
and thus, if E ∈ N , then f−1(E) ∈M.

The previous two propositions imply continuous functions between topological spaces are

measurable.

Corollary 1.1. If (X,M(τX)) and (Y,M(τY )) are measurable spaces, and f : X −→ Y is

continuous on X, then f is measurable.

13



1.1.3 Measures

Let (X,M) be a measurable space.

Definition. A measure, or more precisely a positive measure, on (X,M), or simply on

X if M is understood, is a function µ :M−→ [0,+∞] such that

(a) µ(∅) = 0,

(b) if {Ej}∞j=1 is a sequence of disjoint sets in M, then

µ(∪ni=1Ei) =
∞∑
i=1

µ(Ei), (1.1)

where the last condition is commonly referred to as the countable additivity property.

Note that the infinite sum in (1.1) is allowed to take the value +∞, e.g., if either µ(Ei0) =

+∞ for some i0 ∈ N, or the right-hand side yields a divergent sum of finite, non-negative

numbers.

The following properties is a simple exercise we leave for the reader to verify.

Proposition 1.4. Let {Ei} be any sequence of measurable sets in M. Then,

(a) E1 ⊂ E2 implies that µ(E1) ≤ µ(E2);

(b) if E1 ⊂ E2 ⊂ E3 ⊂ . . ., then limi→∞ µ(Ei) = µ(∪∞i=1Ei); and

(c) if µ(E1) < +∞ and E1 ⊃ E2 ⊃ E3 ⊃ . . ., then limi→∞ µ(Ei) = µ(∩∞i=1Ei).

Definition. If µ is a measure on (X,M), then the ordered triple (X,M, µ) is called a

measure space.

Definition. Given a measure space (X,M, µ), we say µ is finite if µ(X) < +∞, and we

say a set E ⊂ X is σ-finite with respect to µ provided that E = ∪∞i=1Ei for some measurable

sets Ei ∈ M such that µ(Ei) < +∞, for each i ∈ N. In the particular case E = X, we just

say µ is σ-finite.

In the case X is a topological space and M = BX is the Borel σ-algebra on X, then

Definition. A measure on (X,BX) is called a Borel measure.
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1.1.4 Null sets and complete measures

Again, suppose (X,M, µ) is a given measure space. An important class of non-trivial mea-

surable sets are those that have measure zero, which we call null sets. Obviously, countable

subadditivity implies the countable union of null sets is null, a simple consequence we use

often enough. It will also be common and necessary to assert a statement is true or a certain

property holds for all elements x in X except in some null set. In such a situation, we say the

statement or property is true almost everywhere, µ-almost everywhere, or we simply

just write a.e. for short.

It is clear that part (a) of Proposition 1.4 ensures all subsets F of a null set E ∈ M
is null so long as F is measurable, i.e., F ∈ M. In developing a practical and robust

theory, we cannot assume all sets in 2X are measurable but we adopt the following notion of

completeness for measures.

Definition. A measure whose µ :M −→ [0,+∞] whose domain M includes all subsets of

null sets is said to be complete, or more precisely, the measure space (X,M, µ) is said to

be complete.

Completeness is a convenient property to have in practice, and fortunately, we can always

extend any given measure space to one with a complete measure, if needed.

Theorem 1.1 (Completeness). Suppose (X,M, µ) is a measure space and set

M =
{
E ∪ F |E ∈M, F ⊂ N for some null set N ∈M

}
.

Then

(a) M is a σ-algebra on X, and

(b) there exists a unique complete measure µ on M such that µ
∣∣
M = µ.

Remark. The unique extension µ in the previous theorem is called the completion of the

µ, and M is called the completion of M with respect to µ.

1.2 Outer measures

In this section, we outline an approach for constructing measures from a weaker set of

conditions and a mapping defined on the entire power set 2X . Specifically, given a non-

empty set X, an outer measure on X is a function µ∗ : 2X −→ [0,+∞] such that

(a) µ∗(∅) = 0,

(b) if A ⊂ B, then µ∗(A) ≤ µ∗(B), (monotonicity)

(c) µ∗(∪∞i=1Ai) ≤
∑∞

i=1 µ
∗(Ai) for any sequence {Ai}∞i=1 in 2X . (countable subadditivity)
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The following result asserts that starting with any sub-collection in 2X containing both the

empty set and entire set, and given a reasonably defined function on it, then we can always

generate an outer measure on X.

Theorem 1.2. If we have a collection E ⊂ 2X and a function ρ : E −→ [0,+∞] such that

∅, X ∈ E, and ρ(∅) = 0, then the function µ∗ : 2X −→ [0,+∞], where

µ∗(A) = inf
{ ∞∑

i=1

ρ(Ei)
∣∣∣Ei ∈ E , A ⊂ ∪∞i=1Ei

}
,

defines an outer measure on X.

The next result reveals how to start with an outer measure then construct a complete

measure space. Some definitions and motivating comments are in order.

Definition. If µ∗ is an outer measure on a non-empty set X, a set A ⊂ X is said to be

µ∗-measurable if

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) for all E ⊂ X.

In fact, we may weaken and replace the equality in this definition with the inequality

µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac),

since the reverse inequality automatically holds thanks to the countable subadditivity prop-

erty of outer measures. Now, we come to the claimed result.

Theorem 1.3 (Carathèodory). If µ∗ is an outer measure on X, the collection M of µ∗-

measurable sets forms a σ-algebra on X, and the restriction of µ∗ to M defines a complete

measure.

An application of Carathèdory’s theorem will lead to a complete measure space provided

we start with a “premeasure” on only an algebra on X.

Definition. If A ⊂ 2X is an algebra on X, a function µ0 : A −→ [0,+∞] is called a

premeasure on A if

(a) µ0(∅) = 0,

(b) if {Ai}∞i=1 is a sequence of disjoint sets in A such that ∪∞i=1Ai ∈ A, then

µ0

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ0(Ai).
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A premeasure µ0 on A induces an outer measure µ∗ on X ensured by Theorem 1.2, i.e.,

µ∗(A) = inf
{ ∞∑

i=1

µ0(Ei)
∣∣∣Ei ∈ E , A ⊂ ∪∞i=1Ei

}
. (1.2)

Proposition 1.5. If µ0 is a premeasure on an algebra A and µ∗ is defined in (1.2), then

(i) µ∗
∣∣
A = µ0, and

(ii) every set in A is µ∗-measurable.

Theorem 1.4. Let A ⊂ 2X be an algebra on X, µ0 is a premeasure on A, and set M :=

M(A), the σ-algebra generated by A. Then,

(a) There exists a measure µ on M such that µ = µ∗
∣∣
M, where µ∗ is defined in (1.2).

(b) If ν is another measure on M that extends µ0, i.e., ν
∣∣
A = µ0, then

ν(E) ≤ µ(E) for all E ∈M with equality if µ(E) <∞.

(c) If µ0 is σ-finite in the same sense with measures, then µ is the unique extension of µ0

to a measure on M.

1.3 Monotone classes and the uniqueness of measures

Definition. A monotone classM is a collection of sets satisfying the following two prop-

erties.

(a) If {Ai}ni=1 is a sequence of sets in M and A1 ⊂ A2 ⊂ A3 ⊂ . . ., then
⋃∞
i=1Ai ∈M.

(b) If {Bi}ni=1 is a sequence of sets in M and B1 ⊃ B2 ⊃ B3 ⊃ . . ., then
⋂∞
i=1Bi ∈M.

The following result asserts σ-algebras are monotone limits of algebras.

Theorem 1.5 (Monotone Class). Let X be a non-empty set and let E be an algebra of sets

on X such that ∅, X ∈ E. Then, there exists a smallest monotone class M that contains E.

Furthermore, M is also the smallest σ-algebra containing E, i.e., M =M(E).

One of many important applications of the Monotone Class Theorem is the uniqueness

of measures.

Theorem 1.6. Let X be a non-empty set and E is an algebra of sets on X, and assume

∅, X ∈ E, and recall that M(E) denotes the σ-algebra generated by E. Let µ be a σ-finite

measure in the stronger sense that there is a sequence of sets {Ei}∞i=1 in E ⊂ M(E), with

µ(Ei) < +∞ for each i ∈ N, such that X =
⋃∞
i=1Ei. If ν is a measure that coincides with µ

on E, then µ = ν on all of M(E).

Proof.

17



1.4 A model case: Borel measures on the real line

We focus on the special case X = R with Borel σ-algebra BR generated by the open sets of

R. We characterize the Borel sets in R and study the measures on these sets. In fact, the

Borel sets of R can be generated by open intervals, closed intervals, half-open intervals, etc.

For instance, there holds

Proposition 1.6. If E = {(a,∞) | a ∈ R}, then M(E) = BR.

Proof. Indeed, each member of E is an open set in R and so E ⊂ BR, which further implies

M(E) ⊂ BR by Lemma 1.1. Conversely, since the family of open intervals forms a base for

the topology τR of R, and since all open intervals are contained in M(E) by construction,

Lemma 1.1 also implies BR =M(τR) ⊂M(E).

Remark. As hinted earlier, we can replace E with other families of unbounded intervals such

as

{(a,∞) | a ∈ R}, {[a,∞) | a ∈ R}, {(−∞, b) | b ∈ R} or {(−∞, b] | b ∈ R};
or even families consisting of bounded intervals such as

{(a, b) | a < b in R}, {[a, b] | a < b in R}, {[a, b) | a < b in R} or {(a, b] | a < b in R}.

Verifying these assertions, however, is left to the reader.

To motivate what follows, suppose we have a finite Borel measure µ on (R,BR) and

we define a mapping F : R −→ [0,∞), where F (x) = µ((−∞, x]). Then F is monotone

increasing and right continuous in R, and for a < b,

µ((a, b]) = F (b)− F (a). (1.3)

Notice the case when F (x) = x is the measure that assigns the length of the interval.

Interestingly, we will show the reverse process holds, i.e., any monotone increasing and right

continuous function induces a unique Borel measure satisfying “nice” properties such as (1.3).

First, we shall require the following result whose proof, although tedious, is straightforward

and left for the reader (c.f. page 33 in Folland). Now, we consider the collection of intervals

of the form ∅, (a, b], or (a,∞), where −∞ ≤ a < b <∞. We call such intervals h-intervals,

and we note this collection is closed under disjoint unions, complements, and intersections.

We define A to be the collection of finite disjoint unioins of h-intervals, which defines an

algebra on R by Proposition 1.1. Proposition 1.1 further implies that M(A) = BR.

Proposition 1.7. Let A be the algebra of finite disjoint unions of h-intervals, and suppose

that F : R −→ R is monotone increasing and right continuous. If {(ai, bi] | i = 1, 2, . . . , n}
are disjoint h-intervals, we define µ0(∅) = 0 and

µ0

(
∪ni=1 (ai, bi]

)
=

n∑
i=1

F (bi)− F (ai).

Then µ0 is a premeasure on A.
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Theorem 1.7. If F : R −→ R is any monotone increasing and right continuous function,

then there exists a unique Borel measure µF on R such that

µF ((a, b]) = F (b)− F (a) for all a, b ∈ R.

If G is another such function, then µF = µG if and only if F −G is constant in R.

Conversely, if µ is a Borel measure on R that is finite on all Borel sets, and we define

F : R −→ R to satisfy F (0) = 0, F (x) = µ((0, x]) if x > 0, and F (x) = −µ((x, 0]) if x < 0,

then F is monotone increasing and right continuous, and µ coincides with µF .
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CHAPTER 2

Abstract Integration

2.1 Integration of non-negative functions

Suppose we are given a measure space (X,M, µ), and we would like to define a notion of

an integral of a given function defined on our space. We shall construct such an integral

in this section but before we can do so, we must clarify the class of functions suitable in

our construction. These functions are the so-called measurable functions from the previous

chapter.

If (X,M) and (Y,N ) are a pair of measurable spaces, recall we defined the notion of a

measurable mapping between them as follows. A function f : X −→ Y is called (M,N )-

measurable or just measurable if f−1(E) ∈ M for all E ∈ N . In the special case when X

and Y are topological spaces whose σ-algebras are generated by their topologies, then the

continuous functions mapping X into Y are measurable thanks to Corollary 1.1. Another

special case is if Y = R, in which case a real-valued mapping f : X −→ R is evidently

M-measurable if and only if f−1((a,∞)) ∈ M for all a ∈ R. In fact, thanks to Proposition

1.6, we can replace the interval (a,∞) in this characterization with any one of the following

other types: [a,∞), (−∞, a) or (−∞, a].

Here, we shall mostly focus on extended real-valued measurable functions on X in defining

our abstract notion of integration. A special class of measurable functions are the simple

functions, which we will use to construct our integral over a measure space X. By a simple

function on X, we mean a finite linear combination of characteristic functions of sets in the

σ-algebra M (where we do not allow such simple functions to assume values of ±∞). In

other words, a simple function ϕ is measurable and can be represented in the form

ϕ =
n∑
i=1

aiχEi
,
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where ai ∈ R and χEi
is the characteristic function of a measurable set Ei ∈M. Indeed, this

representation of ϕ is not necessarily unique, however there is a unique standard repre-

sentation characterized by the fact that the coefficients ai are distinct and the measurable

sets Ei are disjoint non-empty subsets such that X = ∪ni=1Ei.

We are now prepared to define the integral of a measurable function by first defining the

integral of a simple function.

Definition. Given a measure space (X,M, µ), L+ will denote the space of allM-measurable

functions from X into [0,+∞].

Definition (Integral of a simple function). If ϕ is a simple function in L+ with standard

representation ϕ =
∑n

i=1 aiχEi
, then the integral of ϕ with respect to the measure µ is

defined by ˆ
X

ϕdµ =
n∑
i=1

aiµ(Ei),

(with the convention that 0 ·+∞ = 0 on the right-hand side).

With this definition, the integral of any non-negative measurable function is obtained as

an approximation from below by simple functions.

Definition. In general, if f ∈ L+, the integral of f with respect to µ is defined by

ˆ
X

f dµ = sup
{ˆ

X

ϕdµ
∣∣∣ϕ is simple, 0 ≤ ϕ ≤ f

}
.

Remark. For brevity, we sometimes use the short-hand notation

ˆ
f dµ or

ˆ
f in place ofˆ

X

f dµ when the space X and measure µ are obvious. Some authors also use the conventional

notation

ˆ
X

f(x) dµ(x) or

ˆ
X

f(x)µ(dx) to denote the integral.

Definition. If E ∈M, then fχE is also in L+ and we define the integral of f on E by

ˆ
E

f dµ =

ˆ
X

fχE dµ.

The following familiar results (for the Riemann integral) hold for simple functions and

can easily be extended to functions in L+. The details are left to the reader.

Proposition 2.1. Let ϕ and ψ be simple functions in L+. Then the following statements

hold.

(a) If c ≥ 0, then

ˆ
(cϕ) dµ = c

ˆ
ϕdµ;
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(b)

ˆ
(ϕ+ ψ) dµ =

ˆ
ϕdµ+

ˆ
ψ dµ;

(c) ϕ ≤ ψ implies

ˆ
ϕdµ ≤

ˆ
ψ dµ;

(d) the mapping E 7→
ˆ
E

ϕdµ defines a measure on M.

There is an important class of measurable functions that will appear regularly here-

after, and these are the Lebesgue integrable functions. More generally, we consider complex

measurable functions f : X −→ C on a given measure space (X,M, µ). Indeed |f | is a

measurable function from X into [0,+∞] and so its integral
´
X
|f | dµ is defined. Then, we

denote by L1(µ) the set of all complex measurable functions on X for which

ˆ
X

|f | dµ < +∞,

and we call the elements of L1(µ) the summable or the Lebesgue integrable functions

(with respect to µ). For 1 ≤ p < +∞ we define by Lp(µ) the set of all complex measurable

functions f : X −→ C such that ˆ
X

|f |p dµ < +∞,

and the elements of Lp(µ) are called the p-summable functions (with respect to µ). The

set Lp(µ) is indeed a linear space in which

‖f‖Lp(µ) :=
(ˆ

X

|f |p dµ
)1/p

defines a norm on it. In fact, Lp(µ) defines a Banach space under this norm, and Lp(µ) is

commonly called a Lebesgue or Lp space.

2.2 The convergence theorems

Let (X,M, µ) be a given measure space.

Theorem 2.1 (Lebesgue’s Montone Convergence). Let {fn} be a monotone increasing

sequence of non-negative measurable functions that converges pointwise to a function f(x),

i.e.,

(a) 0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ fn(x) ≤ . . . ≤ ∞ for every x ∈ X (monotone increasing),

(b) and

lim
n→∞

fn(x) = f(x) for every x ∈ X (pointwise convergence).
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Then f is measurable and
ˆ
X

fn dµ −→
ˆ
X

f dµ as n −→∞. (2.1)

Proof. Since the pointwise limit of a sequence of non-negative measurable functions is also a

non-negative measurable function, the limiting function f : X −→ [0,∞] is also measurable.

Moreover, since fn ≤ fn+1 ≤ f for all n ∈ N, we deduce that
ˆ
X

fn dµ ≤
ˆ
X

fn+1 dµ ≤
ˆ
X

f dµ for all n ∈ N.

Thus,

lim
n→∞

ˆ
X

fn dµ ≤
ˆ
X

f dµ. (2.2)

To obtain the reverse inequality, we choose an arbitrary 0 < α < 1 and let ϕ be any simple

function satisfying 0 ≤ ϕ ≤ f . Set

An :=
{
x ∈ X | fn(x) ≥ αϕ(x)

}
.

It is easy to see that An ∈ M and An ⊂ An+1 for each n, and that X = ∪∞n=1An. Under

these conditions on {An}∞n=1, Proposition 1.4 implies that

ν(∪∞n=1An) = lim
n→∞

ν(An)

for any measure ν on (X,M), and it is also standard to show ν(E) :=
´
E
ϕdµ indeed

provides such a particular measure (actually, we will soon show in Corollary 2.2 that this

remains valid if ϕ is any non-negative measurable function and not just a simple function).

These standard results imply that
ˆ
X

ϕdµ = ν(X) = ν(∪∞n=1An) = lim
n→∞

ν(An) = lim
n→∞

ˆ
An

ϕdµ.

On the other hand, by our construction of {An}∞n=1, we have that

α

ˆ
An

ϕdµ =

ˆ
An

αϕdµ ≤
ˆ
An

fn dµ ≤
ˆ
X

fn dµ.

Sending n −→∞ in the previous inequality leads us to

α

ˆ
X

ϕdµ = lim
n→∞

ˆ
An

αϕdx ≤ lim
n→∞

ˆ
X

fn dµ. (2.3)

Recall that the integral of f is defined by
ˆ
X

f dµ = sup

ˆ
X

φ dµ,
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where the supremum is taken over all simple functions φ such that 0 ≤ φ ≤ f . Therefore,

since 0 < α < 1 and ϕ were chosen arbitrarily and because of (2.3), we must have that

ˆ
X

f dµ ≤ lim
n→∞

ˆ
X

fn dµ.

Combining this with (2.2) completes the proof of the theorem.

Remark. The integral in (2.1) is allowed to equal +∞. Moreover, an analogue result involv-

ing non-increasing sequences of functions holds true. Namely, if there is a sequence {fn}∞n=1

of non-negative measurable functions with f1 ∈ L1(µ) and this sequence is non-decreasing,

i.e., f1(x) ≥ f2(x) ≥ . . . ≥ f(x) for all x ∈ X, and if fn(x) −→ f(x) for all x ∈ X, then

f : X −→ [0,∞] is measurable and

lim
n→∞

ˆ
X

fn dµ =

ˆ
X

f dµ.

The assumption that f ∈ L1(µ) cannot be omitted.

We recall several important applications and consequences of the Monotone Convergence

Theorem. The first is Fatou’s lemma.

Lemma 2.1 (Fatou’s). If fn : X −→ [0,∞] is measurable for each positive integer n, then

ˆ
X

(
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

ˆ
X

fn dµ.

Proof. Set gn = infk≥n fk and set g := lim infn→∞ fn. Then gn : X −→ [0,∞] is measurable,

gn −→ g pointwise everywhere in X and {gn} is monotone increasing. By the Monotone

Convergence Theorem and the fact that fn ≥ gn in X, for all n, we obtain

ˆ
X

(
lim inf
n→∞

fn

)
dµ =

ˆ
X

g dµ = lim
n→∞

ˆ
X

gn dµ ≤ lim inf
n→∞

ˆ
X

fn dµ.

The next is a consequence of Fatou’s lemma which we often use. For instance, it implies

that strong solutions of elliptic equations on a bounded domain satisfy the equation pointwise

almost everywhere in the domain.

Corollary 2.1. Suppose that f is a non-negative measurable function. Then f = 0 µ-almost

everywhere in X if and only if ˆ
X

f dµ = 0. (2.4)
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Proof. If (2.4) holds, let

En =
{
x ∈ X

∣∣∣ f(x) > 1/n
}
,

so that En is measurable and f ≥ (1/n)χEn , from which we see

0 =

ˆ
X

f dµ ≥ 1

n
µ(En) ≥ 0.

Thus, µ(En) = 0 and so the set

{x ∈ X | f(x) > 0} =
∞⋃
n=1

En

is measurable and has measure zero by the countable additive property of measures. This

verifies that f = 0 µ-almost everywhere in X.

Conversely, assume f = 0 µ-almost everywhere. If

E = {x ∈ X | f(x) > 0},

then obviously E is measurable with µ(E) = 0. Then set fn = nχE so that each fn is

non-negative and measurable, and clearly f ≤ lim infn→∞ fn. Thus, by Fatou’s lemma,

0 ≤
ˆ
X

f dµ ≤ lim inf
n→∞

ˆ
X

fn dµ = lim inf
n→∞

nµ(E) = 0.

Hence, ‖f‖L1(µ) = 0, and this completes the proof.

The next consequence illustrates we can use the integral of any non-negative measurable

function to construct another measure that is absolutely continuous with respect to the

original measure.

Corollary 2.2. If f : X −→ [0,∞] is a non-negative measurable function and if λ is defined

on the σ-algebra M by

λ(E) =

ˆ
E

f dµ, (2.5)

then λ is a measure on the measurable space (X,M). Moreover, the measure λ is absolutely

continuous with respect to µ in the sense that if E ∈M and µ(E) = 0, then λ(E) = 0.

Proof. We verify λ defines a measure. Obviously, λ(∅) = 0. Now, suppose that {En}∞n=1 ⊂M
is a sequence of disjoint measurable sets. Set E := ∪∞n=1En ∈M and define

fn(x) =
n∑
k=1

fχEk
.
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Indeed, fn is a non-negative measurable function and

ˆ
X

fn du =
n∑
k=1

ˆ
X

fχEk
dµ =

n∑
k=1

λ(Ek).

Then {fn} is a monotone increasing sequence of non-negative, measurable functions converg-

ing pointwise to f on X. Hence, the Monotone Convergence Theorem implies that

λ(E) =

ˆ
E

f du = lim
n→∞

ˆ
X

fn dµ =
∞∑
n=1

λ(En),

and therefore λ defines a measure.

Assume now that E ∈ M such that µ(E) = 0. The function fχE vanishes µ-almost

everywhere. So, by Corollary 2.1, we deduce that

λ(E) =

ˆ
X

fχE dµ = 0.

Remark. In general, we write λ� µ to mean λ is absolutely continuous with respect to µ.

Under suitable conditions, the converse of Corollary 2.2 holds, and this result is well-known

and is referred to as the Radon-Nikodym Theorem. We state it below for completeness but

omit its proof. The proof can be found in any standard graduate real analysis textbook, e.g.,

see our references [2, 3, 4].

Theorem 2.2 (Radon-Nikodym). Let λ and µ be σ-finite measures on (X,M) and suppose

λ� µ. Then there exists a measuable function f : X −→ [0,∞] such that

λ(E) =

ˆ
E

f dµ, E ∈M.

Moreover, the function f is uniquely determined µ-almost everywhere.

Remark. The function f in Theorem 2.2 is called the Radon-Nikodym derivative of λ with

respect to µ and we write
dλ

dµ
= f.

We can invoke the earlier corollary to replace pointwise convergence with µ-almost ev-

erywhere convergence in Theorem 2.1 but the limit function is assumed to be measurable a

priori.

Corollary 2.3. Let {fn} be a monotone increasing sequence of non-negative measurable

functions that converges µ-almost everywhere in X to a non-negative measurable function

f(x). Then ˆ
X

f dµ = lim
n→∞

ˆ
X

fn dµ.
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Proof. Choose N ∈ M be such that µ(N) = 0 and {fn} converges to f at every point of

M = X\N . Then {fnχM} converges to fχM in X. Thus Theorem 2.1 implies thatˆ
X

fχM dµ = lim
n→∞

ˆ
X

fnχM dµ.

Since µ(N) = 0, the functions fχN and fnχN vanish µ-almost everywhere. It follows from

2.4 that ˆ
X

fχN dµ = 0 and

ˆ
X

fnχN dµ = 0.

Since f = fχM + fχN and fn = fnχM + fnχN , it follows thatˆ
X

f dµ =

ˆ
X

fχM dµ = lim
n→∞

ˆ
X

fnχM dµ = lim
n→∞

ˆ
X

fn dµ.

An essential convergence theorem often utilized in our applications is Lebesgue’s Domi-

nated Convergence Theorem (LDCT). This useful result simply follows from Fatou’s lemma

and the following basic fact.

Lemma 2.2. If f ∈ L1(µ), then ∣∣∣ ˆ
X

f dµ
∣∣∣ ≤ ˆ

X

|f | dµ.

Proof. Set z =
´
X
f dµ ∈ C. Thus, |z| = αz for some α ∈ C with |α| = 1. If u = Re(αf),

then u ≤ |αf | = |f | and so

|z| = αz = α

ˆ
X

f dµ =

ˆ
X

αf dµ =

ˆ
X

u dµ ≤
ˆ
X

|f | dµ,

where we used the fact that
´
X
αf dµ is real.

Theorem 2.3 (Lebesgue’s Dominated Convergence). Suppose {fn} is a sequence of mea-

surable functions on X such that

f(x) = lim
n→∞

fn(x)

exists for every x ∈ X. If there is a function g ∈ L1(µ) such that

|fn(x)| ≤ g(x) for n = 1, 2, 3, . . . ; x ∈ X,

then f ∈ L1(µ),

lim
n→∞

ˆ
X

|fn − f | dµ = 0

and

lim
n→∞

ˆ
X

fn dµ =

ˆ
X

f dµ.
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Proof. Indeed, f ∈ L1(µ), since |f | ≤ g ∈ L1(µ) and f is measurable. We similarly deduce

that fn ∈ L1(µ) for all n.

From the triangle inequality, we also get that |fn − f | ≤ 2g, and so fn − f ∈ L1(µ).

Applying Fatou’s lemma to the non-negative functions 2g − |fn − f | leads us toˆ
X

2g dµ ≤ lim inf
n→∞

ˆ
X

(2g − |fn − f |) dµ

=

ˆ
X

2g dµ+ lim inf
n→∞

(
−
ˆ
X

|fn − f | dµ
)

=

ˆ
X

2g dµ− lim sup
n→∞

ˆ
X

|fn − f | dµ.

Noting that
´
X
g dµ is finite, we may add −2

´
X
g dµ to previous inequality to arrive at

lim sup
n→∞

ˆ
X

|fn − f | dµ ≤ 0.

This further implies that

lim
n→∞

ˆ
X

|fn − f | dµ = 0. (2.6)

Since fn − f ∈ L1(µ), Lemma 2.2 implies that∣∣∣ˆ
X

(fn − f) dµ
∣∣∣ ≤ ˆ

X

|fn − f | dµ,

and so (2.6) further yields that

lim
n→∞

ˆ
X

fn dµ =

ˆ
X

f dµ.

Remark. In Theorem 2.3, we can easily weaken the statement and only assume that point-

wise convergence holds in the µ-almost everywhere sense. This is because we can always

redefine fn and f on a set of measure zero.

More precisely, since a countable union of measurable sets of measure zero is measurable

and also has measure zero, we can find a measurable set E with µ(E) = 0 and redefine {fn},
and similarly with f , so that fn(x) = 0 for x ∈ E and fn(x) remains unchanged for x 6∈ E.

Note this does not change the value of the integrals
´
X
fn dµ.

An immediate application of Theorem 2.3 is the following

Corollary 2.4. If t −→ f(x, t) is continuous on [a, b] for each x ∈ X, and if there exists

g ∈ L1(µ) such that |f(x, t)| ≤ g(x) for x ∈ X, then the function F defined by

F (t) =

ˆ
X

f(x, t) dµ(x) (2.7)

is continuous for each t in [a, b].
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Another basic application of Theorem 2.3 indicates when we may differentiate F and

when it is equivalent to passing derivatives onto the integrand f . Hereafter, an integrable

function f on X means f is a measurable function on X belonging to L1(µ).

Corollary 2.5. Suppose that for some t0 in [a, b], the function x −→ f(x, t0) is integrable

on X, that ∂f/∂t exists on X × [a, b], and that there exists an integrable function g on X

such that ∣∣∣∂f
∂t

(x, t)
∣∣∣ ≤ g(x).

Then the function F as defined in (2.7) is differentiable on [a, b] and

dF

dt
(t) =

d

dt

ˆ
X

f(x, t) dµ(x) =

ˆ
X

∂f

∂t
(x, t) dµ(x).

Proof. Let t be any point of [a, b]. If {tn} is a sequence in [a, b] converging to t with tn 6= t,

then
∂f

∂t
(x, t) = lim

n→∞

f(x, tn)− f(x, t)

tn − t
, x ∈ X.

Therefore, the function x −→ (∂f/∂t)(x, t) is measurable.

If x ∈ X and t ∈ [a, b], by the mean-value theorem, there exists s1 between t0 and t such

that

f(x, t)− f(x, t0) = (t− t0)
∂f

∂t
(x, s1).

Therefore,

|f(x, t)| ≤ |f(x, t0)|+ |t− t0|g(x),

which implies that the function x −→ f(x, t) is integrable for each t in [a, b]. Hence, if tn 6= t,

then
F (tn)− F (t)

tn − t
=

ˆ
X

f(x, tn)− f(x, t)

tn − t
dµ(x).

Since this integrand is dominated by g(x), we may apply Theorem 2.3 to conclude the desired

result.

We can use Theorem 2.3 to establish a similar convergence result in the Lebesgue spaces

Lp(µ) with 1 ≤ p <∞.

Theorem 2.4. Let 1 ≤ p < ∞ and suppose {fn} is a sequence in Lp(µ) which converges

µ-almost everywhere to a measurable function f . If there exists a g ∈ Lp(µ) such that

|fn(x)| ≤ g(x), x ∈ X, n ∈ N,

then f belongs to Lp(µ) and {fn} converges in Lp(µ) to f .
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Proof. Assume 1 < p < ∞ since the case p = 1 is exactly Theorem 2.3. Obviously, the

following two properties hold for µ-almost everywhere,

|fn(x)− f(x)|p ≤ [2g(x)]p, and lim
n→∞

|fn(x)− f(x)|p = 0;

and there holds [2g]p and thus gp belongs to L1(µ). Hence, from Theorem 2.3, we get

lim
n→∞

ˆ
X

|fn − f |p dµ = 0,

and this completes the proof of the theorem.

Remark. Lebesgue’s dominated convergence theorem and its extension provide sufficient

conditions that guarantee when pointwise convergence of a sequence of measurable functions

implies strong convergence in the Lp norm topology; namely, if the sequence of functions can

be compared to an Lp function, then pointwise convergence implies Lp convergence. Con-

versely, Lp convergence does not generally imply pointwise convergence. We give an example

below illustrating this.

Let X = [0, 1], the sigma algebra M are the Borel sets, and µ is the Lebesgue measure.

Consider the ordered list of intervals

[0, 1], [0, 1
2
], [1

2
, 1], [0, 1

3
], [1

3
, 2
3
], [2

3
, 1], [0, 1

4
], [1

4
, 1
2
], [1

2
, 3
4
], [3

4
, 1], [0, 1

5
], [1

5
, 2
5
], . . . ; let fn be the

characteristic function of the nth interval on this list, and let f be identically zero. If

n > m(m+ 1)/2 = 1 + 2 + . . .+m, then fn is a characteristic function of an interval I whose

measure is at most 1/m. Hence,

‖fn − f‖pLp(µ) =

ˆ
X

|fn − f |p dµ =

ˆ
X

|fn|p dµ =

ˆ
X

fn dµ = µ(I) ≤ 1/m,

and this shows {fn} converges in Lp to f ≡ 0.

On the other hand, if x is any point of [0, 1], then the sequence of numbers {fn(x)} has a

subsequence consisting only of 1’s and another subsequence consisting of 0’s. Therefore, the

sequence {fn} does not converge at any point of [0, 1]! (although we may select a particular

subsequence of {fn} which does converge to f).

The next result swaps the domination condition in the LDCT with finite measure and

uniform integrability.

Theorem 2.5 (Vitali’s Convergence Theorem). Let (X,M, µ) be of finite measure, i.e.,

µ(X) < +∞, and suppose the sequence {fn} is uniformly integrable over X, i.e., for ev-

ery ε > 0, there exists δ > 0 such that for each n, E measurable and µ(E) < δ implies´
E
|fn| dµ < ε. If {fn} converges pointwise µ-a.e. in X to f , then

lim
n→∞

ˆ
X

fn dµ =

ˆ
X

f dµ.
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CHAPTER 3

Radon Measures

We let X be a locally compact Hausdorff (LCH) topological space, and recall BX denotes the

Borel sets of X. The objective of this chapter is to give an introduction to Radon measures

and their properties, and important characterizations useful in applications.

3.1 Regular Borel and Radon measures

We start by introducing regularity conditions on Borel measures, which will be useful in

approximating the measure of each Borel set.

Definition. A Borel measure µ on X is said to be outer regular on a set E ⊂ X if

µ(E) = inf
{
µ(U)

∣∣U is open, E ⊂ U
}
,

and it said to be inner regular on E if

µ(E) = sup
{
µ(K)

∣∣K is compact, K ⊂ E
}
.

A Borel measure is said to be regular if it is both outer and inner regular on all Borel sets.

Thus, regularity of a Borel measure roughly states that the measure of a Borel set can

be approximated inside and outside, respectively, by compact and open sets. We introduce

a special type of Borel measure which are locally finite on compact subsets and that are

regular in a slightly weaker sense than that of Borel regularity.

Definition. A Radon measure on X is a Borel measure that is finite on all compact sets

of X, outer regular on all Borel sets, and inner regular on all open sets of X.
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Remark. Note that we are restricting the inner regularity of Radon measures to only the

open sets rather than to all Borel sets. However, as we shall see below (see Theorem 3.1),

Radon measures are inner regular on all Borel sets if we further assume X is σ-compact. If

σ-compactness is dropped, then inner regularity on Borel sets may no longer hold (see the

remark immediately after the corollary).

3.2 The Riesz Representation Theorem

There is a profoundly deep connection between Radon measures and continuous functions

with compact support, which is the topic of our next main result. Before we state the result,

we first introduce some necessary notation and definitions. We let Cc(X) denote the normed

linear space of continuous (real-valued) functions on X with compact support. A norm on

Cc(X) is given by the uniform norm,

‖f‖u := sup
X
|f(x)|.

The dual space of Cc(X), denoted by Cc(X)∗, is the collection of all continuous (i.e.

bounded) linear functionals on X. A linear functional I : Cc(X) −→ R is said to be

positive if f ≥ 0 implies that I(f) ≥ 0. If U is an open set in X and f ∈ Cc(X), we write

f ≺ U

to mean that 0 ≤ f ≤ 1 and supp(f) ⊂ U . If K is a compact set in X and f ∈ Cc(K), we

write

K ≺ f

to mean 0 ≤ f ≤ 1 in X, and f ≡ 1 in K.

The following is a basic boundedness property for positive linear functionals on X.

Proposition 3.1. If I : Cc(X) −→ R is a positive linear functional, then for each compact

subset K of X, there exists a constant C(K), depending on K, such that |I(f)| ≤ C(K)‖f‖u
for all f ∈ Cc(X) such that supp(f) ⊂ K.

To motivate the following, we suppose µ is a Borel measure on X that is locally finite,

i.e., µ(K) < +∞ for every compact set K ⊂ X. Then, it is obvious Cc(X) is contained in

L1(µ) and thus, it is easy to see the map f −→
´
X
f dµ defines a positive linear functional on

Cc(X). That is, we can naturally assign a positive linear functional on Cc(X) to every locally

finite Borel measure on X. The curious reader may ask if this assignment is unique and if

the opposite scenario holds. That is, s/he may wonder if we may assign to each positive

linear functional a unique locally finite Borel measure on X. This is indeed the case, and it

is the principle result of the Riesz Representation Theorem for Radon measures.
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Theorem 3.1 (Riesz Representation). If I is a positive linear functional on Cc(X), then

there exists a unique Radon measure µ on X such that

I(f) =

ˆ
X

f dµ for each f ∈ Cc(X).

In addition, µ satisfies

µ(U) = sup
{
I(f)

∣∣ f ∈ Cc(X), f ≺ U
}

for each open set U ⊂ X, (3.1)

and

µ(K) = inf
{
I(f)

∣∣ f ∈ Cc(X), f ≥ χK
}

for each compact set K ⊂ X. (3.2)

Proof. Suppose I : Cc(X) −→ R is a positive linear functional.

Step 1: We prove the uniqueness of the Radon measure µ.

If µ is a Radon measure such that I(f) =
´
X
f dµ for all f ∈ Cc(X), and U ⊂ X is open,

f ≺ U implies I(f) ≤
´
X
χU dµ = µ(U). Thus,

µ(U) ≥ sup
{
I(f) | f ∈ Cc(X), f ≺ U

}
.

For a compact set K ⊂ U , Urysohn’s lemma asserts there is a function f ∈ Cc(X) such

that K ≺ f ≺ U , and therefore µ(K) ≤
´
X
f dµ = I(f). By the inner regularity of Radon

measures on open sets,

µ(U) = sup
{
µ(K) |K ⊂ U, K compact

}
≤ I(f).

This verifies µ satisfies (3.1). This also shows µ is determined uniquely by I on all open sets

U in X. In fact, this holds on all Borel sets of X thanks to the outer regularity of µ on all

Borel sets. This establishes the uniqueness of the Radon measure µ.

Step 2: We prove the existence of the Radon measure µ by constructing a suitable outer

measure µ∗ such that every open set in X is µ∗-measurable.

For open set U ⊂ X, we define

µ(U) = sup
{
I(f) | f ∈ Cc(X), f ≺ U

}
. (3.3)

and we define µ∗ : 2X −→ [0,+∞] by

µ∗(E) = inf
{
µ(U) |U ⊃ E, U open

}
(3.4)

and of course these coincide on all open sets, i.e. µ∗(U) = µ(U) for each open set in X. This

follows from the fact that U ⊂ V implies µ(U) ≤ µ(V ).

We now show µ∗ is indeed an outer measure. Actually, we will show for any E ⊂ X,

µ∗(E) = inf
{ ∞∑

i=1

µ(Uj)
∣∣∣Uj open, E ⊂

∞⋃
i=1

Uj

}
, (3.5)
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which we know defines an outer measure by Proposition 1.1. To verify this claim, observe

that for each open U ⊃ E,

µ(U) ≥ inf
{ ∞∑

i=1

µ(Uj)
∣∣∣Uj open, E ⊂

∞⋃
i=1

Uj

}
,

so taking the infimum of the left-hand side over all open U ⊃ E shows

µ∗(E) ≥ inf
{ ∞∑

i=1

µ(Uj)
∣∣∣Uj open, E ⊂

∞⋃
i=1

Uj

}
.

Conversely, to get the reverse inequality of the preceding estimate and thereby proving

(3.5), we only need to show that if {Uj}∞i=1 is a sequence of open sets and U = ∪∞i=1Ui, then

µ(U) ≤
∑∞

i=1 µ(Ui).

Indeed, if U = ∪∞i=1Ui, f ∈ Cc(X), and f ≺ U , we set K = supp(f) ⊂ U . Since K is

compact, K ⊂ ∪ni=1Ui for some finite n. Thus, we have a partition of unity on K subordinate

to {Ui}∞i=1, i.e., there exist g1, g2, . . . , gn of class Ck(X) with gi ≺ Ui and
∑n

i=1 gi = 1 on K.

Then

f =
n∑
i=1

fgj and fgi ≺ Ui

and so

I(f) =
n∑
i=1

I(fgi) ≤
n∑
i=1

µ(Ui) ≤
∞∑
i=1

µ(Ui).

As f was chosen arbitrarily, the definition of (3.3) leads us to µ(U) ≤
∑∞

i=1 µ(Ui) as desired.

Hence, µ∗ defined in (3.5) is an outer measure.

Step 3: We claim every open set in X is µ∗-measurable.

More precisely, we need to show that, for any open set U and given any subset E ⊂ X

with µ∗(E) < +∞,

µ∗(E) ≥ µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E ∩ U c). (3.6)

It suffices to prove (3.6) restricted to only open sets E. This is because for any subset E ⊂ X

with µ∗(E) < +∞ and for ε > 0, we can find an open set V ⊂ X such that E ⊂ V and

µ(V ) < µ∗(E) + ε. Then

µ∗(E) + ε > µ(V ) ≥ µ∗(V ∩ U) + µ∗(V \U) ≥ µ∗(E ∩ U) + µ∗(E\U)

and we recover (3.6) after sending ε −→ 0. Thus, we will assume U and E are both open

sets. Since their union E ∪ U is also open, given any ε > 0, Urysohn’s lemma ensures there

exists f ∈ Cc(X) such that f ≺ E∪U , and by definition of µ in (3.3), I(f) > µ(E∪U)−ε/2.
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Likewise, since E\supp(f) is also open, we can find g ∈ Cc(X) such that g ≺ E\supp(f)

and I(g) > µ(E\supp(f))− ε/2. Observing that f + g ≺ E, it follows that

µ∗(E) = µ(E) ≥ I(f) + I(g) > µ(E ∩ U) + µ(E\supp(f))− ε
≥ µ∗(E ∩ U) + µ∗(E\U)− ε.

Sending ε −→ 0 in the last estimate leads to (3.6).

Step 4: Construct the Borel measure µ from the outer measure.

From the result of Step 3, Carathèdory’s theorem (see Theorem 1.3) implies every Borel

set is µ∗-measurable and that µ = µ∗
∣∣
BX

is a Borel measure. Moreover, our definition of

(3.3) and (3.5) imply µ is outer regular on all Borel sets and satisfy (3.1).

Step 5: The Borel measure µ satisfies (3.2) and it is locally finite on compact sets.

Let K ⊂ X be compact, f ∈ Cc(X) with f ≥ χK , and let Uε = {x ∈ X | f(x) > 1 − ε}.
The set Uε is open since f is continuous, K ⊂ Uε, and if g ≺ Uε we get (1 − ε)−1f − g ≥ 0

and thus I(g) ≤ (1− ε)−1I(f). This implies

µ(K) ≤ µ(Uε) ≤ (1− ε)−1I(f),

and we deduce µ(K) ≤ I(f) after sending ε −→ 0, i.e., we obtain

µ(K) ≤ inf
{
I(f) | f ∈ Cc(X), f ≥ χK

}
for each compact set K ⊂ X. (3.7)

It remains to obtain the reverse inequality of the last estimate. So, let K ⊂ X be a compact

set. Then, for any open set U ⊃ K, Urysohn’s lemma ensures there exists f ∈ Cc(X) such

that K ≺ f ≺ U , and so I(f) ≤ µ(U). Since µ is outer regular on K, we get

µ(K) = inf{µ(U) |U ⊃ K, U open}
≥ inf

{
I(f) | f ∈ Cc(X), f ≥ χK

}
for each compact set K ⊂ X.

This proves (3.2). In addition, (3.7) implies that µ(K) < +∞ for each compact subset

K ⊂ X, i.e., µ is locally finite on compact sets.

Step 6: We prove I(f) =
´
X
f dµ for each f ∈ Cc(X).

Without loss of generality, we prove this for f ∈ Cc(X) with 0 ≤ f ≤ 1. For a positive

integer N , define Kj = {x ∈ X | f(x) ≥ jN−1} for j = 1, 2, . . . . , N , and set K0 = supp(f).

Define f1, f2, . . . , fN ∈ Cc(X) by fj(x) = 0 if x 6= Kj−1, fj(x) = f(x) − (j − 1)N−1 if

x ∈ Kj−1\Kj, and fj(x) = N−1 if x ∈ Kj. That is,

fj = min
{

max
{
f − j − 1

N
, 0
}
,

1

N

}
.

Then, each fj is measurable and N−1χKj
≤ fj ≤ N−1χKj−1

and so

1

N
µ(Kj) ≤

ˆ
X

fj dµ ≤
1

N
µ(Kj−1). (3.8)
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Moreover, if U is an open set containing Kj−1, we have Nfj ≺ U . Thus, I(fj) ≤ N−1µ(U).

Then, by (3.2) and outer regularity, we deduce

1

N
µ(Kj) ≤ I(fj) ≤

1

N
µ(Kj−1). (3.9)

Indeed, we have f =
∑N

j=1 fj, and therefore (3.8) and (3.9), respectively, imply

1

N

N∑
j=1

µ(Kj) ≤
ˆ
X

f dµ ≤ 1

N

N−1∑
j=0

µ(Kj),

and
1

N

N∑
j=1

µ(Kj) ≤ I(f) ≤ 1

N

N−1∑
j=0

µ(Kj).

This further leads to∣∣∣I(f)−
ˆ
X

f dµ
∣∣∣ ≤ 1

N
[µ(K0)− µ(KN)] ≤ 1

N
µ(supp(f)) ≤ C

N
,

for some positive constant C independent of N . Sending N −→ +∞, we arrive at

I(f) =

ˆ
X

f dµ.

3.3 Further Properties of Radon Measures

This section reviews some additional properties of Radon measures. Recall that we define

Radon measures to be inner regular on all open sets. It turns out inner regularity holds over

all Borel sets provided that X is also σ-compact, i.e., there exists a collection {Ki}∞i=1 of

compact subsets of X such that X = ∪ni=1Ki. This will follow from the following result.

Theorem 3.2. Every Radon measure is inner regular on all of its σ-finite sets.

Proof. Let µ be a Radon measure on a measure space (X,M, µ), and let E be any σ-finite

set in X.

Case 1: If µ(E) < +∞, for arbitrary ε > 0, we can pick an open set U ⊃ E such that

µ(U) < µ(E) + ε/2 and a compact F ⊂ U such that µ(F ) > µ(U)− ε/2.

Since µ(U\E) < ε, we can choose an open set V ⊃ U\E such that µ(V ) < ε. Set

K = F\V so that K is compact, K ⊂ E, and

µ(K) = µ(F )− µ(F ∩ V ) > µ(E)− ε/2− µ(V ) > µ(E)− ε.
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This shows µ is inner regular on E.

Case 2: If instead µ(E) = +∞, the we can find a sequence {Ei}∞i=1 such that E1 ⊂ E2 ⊂
E3 ⊂ . . ., and E = ∪∞i=1 such that µ(Ei) < +∞ for each i and µ(Ei) −→ +∞. Then, for

each fixed natural number N , there exists i0 such that µ(Ei0) > N and hence, by applying

the arguments in Case 1, there is a compact set K ⊂ Ei0 with µ(K) > N . Hence,

+∞ = µ(E) = sup
{
µ(K)

∣∣K is compact, K ⊂ E
}
,

meaning µ is inner regular on E.

Corollary 3.1. Every σ-finite Radon measure is regular. Therefore, if X is σ-compact, then

every Radon measure on X is regular.

Remark. We provide a measure space and a Radon measure where inner regularity does not

hold on all Borel sets. Let X = R × Rd, where Rd is the metric space R equipped with the

discrete metric d(x, y) = χ{x 6=y}. If f ∈ C(X), we define f y(x) = f(x, y); and if E ⊂ X,

define Ey = {x | (x, y) ∈ E}.
It follows that f ∈ Cc(X) if and only if f y ∈ Cc(R) for all y and f y = 0 for all but finitely-

many y. Then I(f) =
∑

y∈R
´
f(x, y) dx defines a positive linear functional on Cc(X). Then,

let µ be the unique Radon measure associated to I given by the Riesz Representation theorem

of Theorem 3.1. Then, µ(E) = +∞ for any E such that Ey 6= ∅ for uncountably-many y.

Thus, if E = {0} × Rd, then µ(E) = +∞ but µ(K) = 0 for all compact subsets K ⊂ E,

i.e., µ is not inner regular on this set E.

Furthermore, the following reveals σ-compactness ensures locally finite Borel measures

are indeed Radon.

Theorem 3.3. Let X be a locally compact, Hausdorff space in which every open set is σ-

compact (which is the case, e.g., if X is second countable). Then every Borel measure on X

that is finite on compact sets is regular and hence Radon.

We study some approximation theorems for Radon measures and characterize integration

over Radon measures. The first is the density of test functions in the Lebesgue spaces with

respect to Radon measures.

Theorem 3.4. If µ is a Radon measure on X, then Cc(X) is dense in Lp(µ), for 1 < p <∞.

Proof. Recall that simple functions belonging to Lp(µ) are dense in Lp(µ). Thus, it suffices

to show that for any Borel set E with µ(E) < +∞, χE can be approximated by functions

in Cc(X) with respect to the Lp(µ)-norm.

Choose any ε > 0. By Theorem 3.2, we can find a compact K ⊂ E and an open set U

such that E ⊂ U and µ(U\K) < ε. Further, by Urysohn’s lemma, we can find f ∈ Cc(X)

such that χK ≤ f ≤ χU . This leads to

‖χE − f‖pLp(µ) ≤ µ(U\K) < ε

and this completes the proof.
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For a certain class of non-negative functions, the so-called lower and upper semicontinuous

functions, we have a nice description of their integrals against Radon measures. Let µ be a

Radon measure on a measure space (X,M, µ).

Definition. For a topological space X, a function f : X −→ (−∞,+∞] is said to be lower

semicontinuous if the level set
{
x ∈ X : f(x) > t

}
is open in X for each t ∈ R. Likewise,

a function f : X −→ [−∞,+∞) is said to be upper semicontinuous if the level set{
x ∈ X : f(x) < t

}
is an open set in X for each t ∈ R.

Proposition 3.2. Let (X, τ) be a topological space.

(a) If U is open in X, then χU is lower semicontinuous.

(b) If f and g are lower semicontinuous and c ≥ 0, then cf and f + g are lower semicon-

tinuous.

(c) If G is a family of lower semicontinuous functions and

f(x) = sup
g∈G

g(x),

then f is lower semicontinuous.

(d) If, in addition, X is locally compact and Hausdorff and f is a non-negative, lower semi-

continuous function, then

f(x) = sup
{
g(x)

∣∣ g ∈ Cc(X), 0 ≤ g ≤ f
}
.

Theorem 3.5. Let G be a family of non-negative, lower semicontinuous functions on a

locally compact Hausdorff space X that is directed by ≤, i.e., for every g1, g2 ∈ G, there

exists g ∈ mathcalG such thtat g1 ≤ g and g2 ≤ g. Let f = sup{g | g ∈ G}. If µ is any

Radon measure on X, then ˆ
X

f dµ = sup
g∈G

ˆ
X

g dµ.

Part (d) of Proposition 3.2 and Theorem 3.5 imply the following.

Corollary 3.2. If µ is a Radon measure and f is a non-negative, lower semicontinuous

function, then ˆ
X

f dµ = sup
{ˆ

X

g dµ
∣∣∣ g ∈ Cc(X), 0 ≤ g ≤ f

}
.

We have the following characterization for integration of non-negative Borel measurable

functions.
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Theorem 3.6. If µ is a Radon measure and f is a non-negative, Borel measurable function,

then ˆ
X

f dµ = inf
{ˆ

X

g dµ
∣∣∣ f ≤ g, g is lower semicontinuous

}
.

If {x ∈ X | f(x) > 0} is σ-finite, then
ˆ
X

f dµ = sup
{ˆ

X

g dµ
∣∣∣ 0 ≤ g ≤ f, and g is upper semicontinuous

}
.

3.4 Signed and complex Radon measures

This section introduces signed Radon measures and the complex Radon measures, which

forms a proper normed linear space. This space actually gives an equivalent characterization

of the dual space of C0(X), the linear space of continuous linear functions on C0(X), thereby

extending the Riesz Representation theorem.

3.4.1 The dual space of C0(X).

Let X be a locally compact Hausdorff space. Then recall C0(X) denotes the uniform closure

of Cc(X). Hence, if µ is a Radon measure on X, then the linear functional I(f) =
´
X
f dµ

can be extended continuously to C0(X) if and only if it bounded, i.e., continuous, with

respect to the uniform norm.

In view of this, the basic inequality of Lemma 2.2, and because

µ(X) = sup
{ˆ

X

f dµ
∣∣∣ f ∈ Cc(X), 0 ≤ f ≤ 1

}
due to (3.1) in Theorem 3.1, then I is bounded so long as µ(X) < +∞, in which case µ(X) is

equal to the operator norm of I. In other words, the positive and bounded linear functionals

on C0(X) are characterized by integration against finite Radon measures on X. One main

objective of this section is to further refine this result and give a complete description of the

dual space C0(X)∗.

We shall require the following Jordan-type decomposition for real-valued linear functions

on C0(X,R).

Lemma 3.1. If I ∈ C0(X,R)∗, then there exist positive linear functionals I± ∈ C0(X,R)∗

such that I = I+ − I−.

Definition. A signed Radon measure is a signed Borel measure whose positive and neg-

ative variations are Radon, and a complex Radon measure is a complex Borel measure

whose real and imaginary parts are signed Radon measures.

Remark. In view of Theorem 3.3 and since complex measures are bounded, every complex

Borel measure is Radon on locally compact Hausdorff spaces that are second countable.
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Definition. The denote the collection of all complex Radon measures on X by M(X), and

for µ ∈M(X), we define

‖µ‖ = |µ|(X), (3.10)

where |µ| is the total variation of µ.

Indeed, M(X) defines a normed linear space.

Theorem 3.7. If µ is a complex Borel measure on X, then µ is Radon if and only if |µ| is

Radon. Moreover, M(X) is a linear space and µ 7→ ‖µ‖ defines a norm on M(X).

We have the following refinement of the Riesz Representation theorem.

Theorem 3.8. Let X be a locally compact Hausdorff space, and for µ ∈ M(X) and f ∈
C0(X), let Iµ(f) =

´
X
f dµ. Then the mapping µ 7→ Iµ is an isometric isomorphism from

M(X) onto C0(X)∗.
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